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Overview	

•  Graphs	Extensions	
•  Glyphs	

–  Chernoff	Faces	
–  Mul&-dimensional	Icons	

•  Parallel	Coordinates	
•  Star	Plots	
•  Dimensionality	Reduc&on	

–  Principal	Component	Analysis	(PCA)	
–  Locally	Linear	Embedding	(LLE)	
–  IsoMap		
–  Summon	Mapping	
–  t-SNE	



Dimensionality	Reduc,on	

•  N-dimensional	data	are	projected	to	2	or	3	
dimensions	for	beCer	visualiza,on/
understanding.	

•  Widely	used	strategy.	
•  In	general,	it	is	a	mapping	not	a	geometric	
transforma,on.	

•  Different	mappings	have	different	proper,es.	



Principal	Component	Analysis	
(PCA)	

•  A	classic	mul,-dimensional	reduc,on	
technique	is	Principal	Component	Analysis	
(PCA).	

•  It	is	a	linear	non-parametric	technique.	
•  The	core	idea	to	find	a	basis	formed	by	the	
direc,ons	that	maximize	the	variance	of	the	
data.	



PCA	as	a	change	of	basis	

•  The	idea	is	to	express	the	data	in	a	new	basis,	
that	best	express	our	dataset.		

	
	
•  The	new	basis	is	a	linear	combina,on	of	the	
original	basis.	



PCA	as	a	change	of	basis	



Signal-to-noise	Ra,o	(SNR)	

•  Given	a	signal	with	noise:	

•  It	can	be	expressed	as:		



Redundancy	

Redundant	variables	convey	no	relevant	informa&on!	

Figure From Jonathon Shlens, “A Tutorial on Principal Component Analysis”,  
arXiv preprint arXiv:1404.1100, 2015. 



Covariance	Matrix	

•  Square	symmetric	matrix.	
•  The	diagonal	terms	are	the	variance	of	a	
par,cular	variable.	

•  The	off-diagonal	terms	are	the	covariance	
between	the	different	variables.	



Goals	

•  How	to	select	the	best	P	?		
– Minimize	redundancy	
– Maximize	the	variance	

•  Goal:	to	diagonalize	the	covariance	matrix	of	Y	
– High	values	of	the	diagonal	terms	means	that	the	
dynamics	of	the	single	variables	has	been	
maximized.	

– Low	values	of	the	off-diagonal	terms	means	that	
the	redundancy	between	variables	is	minimized.	



Solving	PCA	
Remember	that	



Solving	PCA	

•  Theorem:	a	symmetric	matrix	A	can	be	
diagonalized	by	a	matrix	formed	by	its	
eigenvectors	as	A	=	EDET	.	

•  The	column	of	E	are	the	eigenvectors	of	A.	



PCA	Computa,on	

•  Organize	the	data	as	an	m	x	n	matrix.	
•  Subtract	the	corresponding	mean	to	each	row.	
•  Calculate	the	eigenvalues	and	eigenvectors	of	
XXT.		

•  Organize	them	to	form	the	matrix	P.	
	



PCA	for	Dimensionality	Reduc,on	

•  The	idea	is	to	find	the	k-th	principal	
components	(k	<	m).	

•  Project	the	data	on	these	direc,ons	and	use	
such	data	instead	of	the	original	ones.	

•  This	data	are	the	best	approxima,on	w.r.t	the	
sum	of	the	squared	differences.		



PCA	as	the	Projec,on	that	
Minimizes	the	Reconstruc,on	Error	
•  If	we	use	only	the	first	k	<	m	components	we	
obtain	the	best	reconstruc,on	in	terms	of	
squared	error.		

Data	point	projected		
on	the	first	k	components.	

Data	point	projected		
on	all	the	components.	



PCA	as	the	Projec,on	that	
Minimizes	the	Reconstruc,on	Error	



Example	

Figure From Jonathon Shlens, “A Tutorial on Principal Component Analysis”,  
arXiv preprint arXiv:1404.1100, 2015. 



PCA	–	Example	

Each	measure	has	6	
dimensions	(!)	
	
But	the	ball	moves	along	
the	X-axis	only..	



Limits	of	PCA	

•  It	is	non-parametric	à	this	is	a	strength	point	
but	it	can	be	also	a	weak	point.	

•  It	fails	for	non-Gaussian	distributed	data.	
•  It	can	be	extended	to	account	for	non-linear	
transforma,on	à	kernel	PCA.	



Limits	of	PCA	

ICA	guarantees		
sta&s&cal	independence	à	



Classic	MDS	

•  Find	the	linear	mapping																												which	
minimizes:	

Euclidean	distance		
in	low	dimensional	space	

Euclidean	distance		
in	high	dimensional	space	



PCA	and	MDS	

•  We	want	to	minimize														,	this	
corresponds	to	maximize:	

That	is	the	variance	of	the	low-dimensional	
points	(same	goal	of	the	PCA).	



PCA	and	MDS	

•  The	size	of	the	covariance	matrix	is	
propor,onal	to	the	dimension	of	the	data.	

•  MDS	scales	with	the	number	of	data	points	
instead	of	the	dimensions	of	the	data.	

•  Both	PCA	and	MDS	preserve	beCer	large	
pairwise	distances.	



Locally	Linear	Embedding	(LLE)	
•  LLE	aCempts	to	discover	nonlinear	structure	in	
high	dimension	by	exploi,ng	local	linear	
approxima,on.	

Mapping	Discovered	Nonlinear	Manifold	M	 Samples	on	M	



Locally	Linear	Embedding	(LLE)	

•  INTUITION	à	assuming	that	there	is	sufficient	
data	(well-sampled	manifold)	we	expect	each	
data	point	and	its	neighbors	can	be	
approximated	by	a	local	linear	patch.	

•  The	patch	is	represented	by	a	weighted	sum	
of	the	local	data	points.		



Compute	Local	Patch	

•  Choose	a	set	of	data	points	close	to	a	given	
one	(ball-radius	or	K-nearest	neighbours).	

•  Solve	for										:		



LLE	Mapping	

•  Find						which	minimizes	the	embedding	cost	
func,on:	

Note	that	weights	are	fixed	in	this	case!	



LLE	Algorithm	

1.  Compute	the	neighbors	of	each	data	
point,							.	

2.  Compute	the	weights										that	best	
reconstruct							.		

3.  Compute	the	vectors							that	minimizes	
the	cost	func,on.	



LLE	–	Example	

PCA	fails	to	
preserve	the	
neighborhood	
structure	of		
the	nearby	
images.	



LLE	–	Example	



ISOMAP	

•  The	core	idea	is	to	preserve	the	geodesic	
distance	between	data	points.		

•  Geodesic	is	the	shortest	path	between	two	
points	on	a	curved	space.		



ISOMAP	

Euclidean	distance		
vs		

Geodesic	distance	

Graph	build		
and		

Geodesic	distance	
Approxima&on	

Geodesic	distance	
vs	

Approximated	Geodesic	



ISOMAP	

•  Construct	neighborhood	graph	
– Define	graph	G	over	all	data	points	by	connec,ng	
points	(i,j)	if	and	only	if	the	point	i	is	a	K	neareast	
neighbor	of	point	j	

•  Compute	the	shortest	path	
– Using	the	Floyd’s	algorithm	

•  Construct	the	d-dimensional	embedding	



ISOMAP	



ISOMAP	



Autoencoders	

•  Machine	learning	is	becoming	ubiquitous	in	
Computer	Science.	

•  A	special	type	of	neural	network	is	called	
autoencoder.	

•  An	autoencoder	can	be	used	to	perform	
dimensionality	reduc,on.		

•  First,	let	me	say	something	about	neural	
network..	



Autoencoder	

Low-dimensional 
Representation 



Mul,-layer	Autoencoder	



Summon	Mapping	

•  Adapta,on	of	MDS	by	weigh,ng	the	
contribu,on	of	each	(i,j)	pair:	

•  This	allows	to	retain	the	local	structure	of	the	
data	beCer	than	classical	scaling	(the	retain	of	
high	distances	is	not	privileged).		



t-SNE	

•  Most	techniques	for	dimensionality	reduc,on	
are	not	able	to	retain	both	the	local	and	the	
global	structure	of	the	data	in	a	single	map.	

•  Simple	tests	on	handwriCen	digits	
demonstrate	this	(Song	et	al.	2007).	

L. Song, A. J. Smola, K. Borgwardt and A. Gretton, “Colored Maximum Variance  
Unfolding”, in Advances in Neural Information Processing Systems. Vol. 21, 2007. 



Stochas,c	Neighbor	Embedding	
(SNE)	

•  Similari,es	between	high-	and	low-	
dimensional	data	points	is	modeled	with	
condi,onal	probabili,es.		

•  Condi,onal	probability	that	the	point	xi	would	
peak	xj	as	its	neighbor:	



Stochas,c	Neighbor	Embedding	
(SNE)	

•  We	are	interested	only	in	pairwise	distance	

•  For	the	low-dimensional	points	an	analogous	
condi,onal	probability	is	used:	



Kullback-Leibler	Divergence	

•  Coding	theory:	expected	number	of	extra	bits	
required	to	code	samples	from	the	
distribu,on	P	if	the	current	code	is	op,mize	
for	the	distribu,on	Q.	

•  Bayesian	view:	a	measure	of	the	informa,on	
gained	when	one	revises	one's	beliefs	from	
the	prior	distribu,on	Q	to	the	posterior	
distribu,on	P.	

•  It	is	also	called	relaDve	entropy.	



Kullback-Leibler	Divergence	

•  Defini,on	for	discrete	distribu,ons:	
	

•  Defini,on	for	con,nuos	distribu,ons:	



Stochas,c	Neighbor	Embedding	
(SNE)	

•  The	goal	is	to	minimizes	the	mismatch	
between	pj|i	and	qj|i.	

•  Using	the	Kullback-Leibler	divergence	this	goal	
can	be	achieved	by	minimizing	the	func,on:	

Note	that	KL(P||Q)	is	not	symmetric	!	



Problems	of	SNE	

•  The	cost	func,on	is	difficult	to	op,mize.	
•  SNE	suffers,	as	other	dimensionality	reduc,on	
techniques,	of	the	crowding	problem.	



t-SNE	

•  SNE	is	made	symmetric:	
	

•  It	employs	a	Student-t	distribu,on	instead	of	a	
Gaussian	distribu,on	to	evaluate	the	similarity	
between	points	in	low	dimension.	



t-SNE	Advantages	

•  The	crowding	problem	is	alleviated.	
•  Op,miza,on	is	made	simpler.	



Experiments	

•  Comparison	with	LLE,	Isomap	and	Summon	
Mapping.		

•  Datasets:	
– MNIST	dataset	
– Olivef	face	dataset	
– COIL-20	dataset	

Comparison figures are from the paper L.J.P. van der Maaten and G.E. Hinton,  
“Visualizing High-Dimensional Data Using t-SNE”, Journal of Machine Learning  
Research, Vol. 9, pp. 2579-2605, 2008. 



MNIST	Dataset	

•  60,000	images	of	handwriCen	digits.	
•  Image	resolu,on:	28	x	28	(784	dimensions).	
•  A	subset	of	6,000	images	randomly	selected	
has	been	used.	



MNIST	
t-SNE	



MNIST		
Summon	Mapping	



MNIST		
LLE	



MNIST		
Isomap	



COIL-20	Dataset	

•  Images	of	20	objects	viewed	from	72	different	
viewpoints	(1440	images).	

•  Image	size:	32	x	32	(1024	dimensions).	



COIL-20	Dataset	

...	



t-SNE	

LLE	
Isomap	

Summon	
Mapping	



	
Objects	

Arrangement	



Mo,va,ons	

•  Mul,dimensional	reduc,on	can	be	used	to	
arrange	objects	in	2D	or	3D	preserving	
pairwise	distances	(but	the	final	placement	is	
arbitrary).	

•  Many	applica,ons	require	to	place	the	objects	
in	a	set	of	pre-defined,	discrete,	posi,ons	(e.g.	
on	a	grid).		



Example	–	Images	of	Flowers	

Random Order 



Example	–	Images	of	Flowers	

Isomap 



Example	–	Images	of	Flowers	

IsoMatch (computed on colors) 



Problem	Statement	

Original		
pairwise	distance	

Euclidean	distance		
in	the	grid	

Permuta&on		

The	goal	is	to	find	the	permuta&on	π	that		
minimizes	the	following	energy:	



IsoMatch	–	Algorithm	

•  Step	I	:	Dimensionality	Reduc,on	(using	
Isomap)	

•  Step	II	:	Coarse	Alignment	(bounding	box)	
•  Step	III	:	Bipar,te	Matching	
•  Step	IV	(op,onal)	:	Random	Refinement	
(elements	swap)	



Algorithm	–	Step	I	
Dimensionality	Reduc,on	



Algorithm	–	Step	II	
Coarse	Alignment	



Bipar,te	Matching	

•  A	complete	bipar,te	graph	is	built	(one	with	
the	star,ng	loca,ons,	one	with	the	target	
loca,ons)	

•  The	arc	(i,j)	is	weighted	according	to	the	
corresponding	pairwise	distance.	

•  A	minimal	bipar,te	matching	is	calculated	
using	the	Hungarian	algorithm.	



Algorithm	–	Step	III	
Bipar,te	Matching	(graph	built)	



Algorithm	–	Step	III	
Bipar,te	Matching	



Algorithm	–	Step	III	
Final	Assignment	



Average	
Colors	



Word	
Similarity	



PileBars	

•  A	new	type	of	thumbnail	bar.		
•  Paradigm:	focus	+	context.		
•  Objects	are	arranged	in	a	small	space	(images	
are	subdivided	into	clusters	to	save	space).	

•  Support	any	image-image	distance.	
•  PileBars	are	dynamic	!	



PileBars	–	Layouts	



Slots	

1 image 2 images 12 images 4 images 3 images 



PileBars	

•  Thumbnails	are	dynamically	rearranged,	
resized	and	reclustered	adap,vely	during	the	
browsing.	

•  This	is	done	in	a	way	to	ensure	smooth	
transiDons.	



PileBars	-	Applica,on	Example		
Naviga,on	of	Registered	Photographs	

Take a look at http://vcg.isti.cnr.it/photocloud . 



	
Ques&ons	?	


