Scientific and Large Data Visualization 29 November 2017 High Dimensional Data - Part II

Massimiliano Corsini

Visual Computing Lab, ISTI - CNR - Italy

Overview

- Graphs Extensions
- Glyphs
- Chernoff Faces
- Multi-dimensional Icons
- Parallel Coordinates
- Star Plots
- Dimensionality Reduction
- Principal Component Analysis (PCA)
- Locally Linear Embedding (LLE)
- IsoMap
- Summon Mapping
- t-SNE

Dimensionality Reduction

- N-dimensional data are projected to 2 or 3 dimensions for better visualization/ understanding.
- Widely used strategy.
- In general, it is a mapping not a geometric transformation.
- Different mappings have different properties.

Principal Component Analysis (PCA)

- A classic multi-dimensional reduction technique is Principal Component Analysis (PCA).
- It is a linear non-parametric technique.
- The core idea to find a basis formed by the directions that maximize the variance of the data.

PCA as a change of basis

- The idea is to express the data in a new basis, that best express our dataset.

$$
\mathbf{P X}=\mathbf{Y}
$$

- The new basis is a linear combination of the original basis.

PCA as a change of basis

$$
\begin{aligned}
\mathbf{P X} & =\left[\begin{array}{c}
\mathbf{p}_{1} \\
\vdots \\
\mathbf{p}_{m}
\end{array}\right]\left[\mathbf{x}_{1} \ldots \mathbf{x}_{n}\right] \\
\mathbf{y}_{i} & =\left[\begin{array}{c}
\mathbf{p}_{1} \cdot \mathbf{x}_{i} \\
\vdots \\
\mathbf{p}_{m} \cdot \mathbf{x}_{i}
\end{array}\right]
\end{aligned}
$$

Signal-to-noise Ratio (SNR)

- Given a signal with noise:

$$
S N R=\frac{P_{\text {signal }}}{P_{\text {noise }}}
$$

- It can be expressed as:

$$
S N R=\frac{\sigma_{\text {signal }}^{2}}{\sigma_{n o i s e}^{2}}
$$

Redundancy

Redundant variables convey no relevant information!

Figure From Jonathon Shlens, "A Tutorial on Principal Component Analysis", arXiv preprint arXiv:1404.1100, 2015.

Covariance Matrix

$$
\operatorname{Cov}(\mathbf{X})=\mathbf{C}_{\mathbf{X}}=\frac{\mathbf{1}}{\mathbf{n}-\mathbf{1}} \mathbf{X X}^{\mathbf{T}}
$$

- Square symmetric matrix.
- The diagonal terms are the variance of a particular variable.
- The off-diagonal terms are the covariance between the different variables.

Goals

- How to select the best \mathbf{P} ?
- Minimize redundancy
- Maximize the variance
- Goal: to diagonalize the covariance matrix of \mathbf{Y}
- High values of the diagonal terms means that the dynamics of the single variables has been maximized.
- Low values of the off-diagonal terms means that the redundancy between variables is minimized.

Solving PCA

$$
\begin{aligned}
\mathbf{C}_{\mathbf{Y}} & =\frac{1}{n-1} \mathbf{Y Y}^{T} \quad \mathbf{Y}=\mathbf{P} \mathbf{X} \\
& =\frac{1}{n-1}(\mathbf{P X})(\mathbf{P X})^{T} \\
& =\frac{1}{n-1} \mathbf{P} \mathbf{X} \mathbf{X}^{T} \mathbf{P}^{T} \\
& =\frac{1}{n-1} \mathbf{P}\left(\mathbf{X X}^{T}\right) \mathbf{P}^{T} \\
\mathbf{C}_{\mathbf{Y}} & =\frac{1}{n-1} \mathbf{P} \mathbf{A} \mathbf{P}^{T}
\end{aligned}
$$

Solving PCA

- Theorem: a symmetric matrix \boldsymbol{A} can be diagonalized by a matrix formed by its eigenvectors as $\boldsymbol{A}=\boldsymbol{E} \boldsymbol{D E}^{\boldsymbol{T}}$.
- The column of \boldsymbol{E} are the eigenvectors of \boldsymbol{A}.

PCA Computation

- Organize the data as an $m \times n$ matrix.
- Subtract the corresponding mean to each row.
- Calculate the eigenvalues and eigenvectors of $X X^{\top}$.
- Organize them to form the matrix \boldsymbol{P}.

PCA for Dimensionality Reduction

- The idea is to find the k-th principal components ($k<m$).
- Project the data on these directions and use such data instead of the original ones.
- This data are the best approximation w.r.t the sum of the squared differences.

PCA as the Projection that

 Minimizes the Reconstruction Error- If we use only the first k < m components we obtain the best reconstruction in terms of squared error.

Data point projected on the first k components. on all the components.

PCA as the Projection that

Minimizes the Reconstruction Error

Example

Figure From Jonathon Shlens, "A Tutorial on Principal Component Analysis", arXiv preprint arXiv:1404.1100, 2015.

PCA - Example

$$
m=\left[\begin{array}{ll}
x & \\
\mathscr{X} A \\
\mathscr{X} B \\
\mathscr{U} B \\
\mathscr{X} C \\
\mathscr{Y}
\end{array}\right] \quad \begin{aligned}
& \text { Each measure has } 6 \\
& \text { dimensions (!) } \\
& \text { But the ball moves along } \\
& \text { the X-axis only.. }
\end{aligned}
$$

Limits of PCA

- It is non-parametric \rightarrow this is a strength point but it can be also a weak point.
- It fails for non-Gaussian distributed data.
- It can be extended to account for non-linear transformation \rightarrow kernel PCA.

Limits of PCA

PCA
ICA

ICA guarantees
statistical independence $\rightarrow p(x, y)=p(x) p(y)$

Classic MDS

- Find the linear mapping $\mathbf{y}_{i}=\mathbf{M} \mathbf{x}_{i}$ which minimizes:

Euclidean distance in high dimensional space

Euclidean distance in low dimensional space

PCA and MDS

- We want to minimize $\phi(\mathbf{Y})$, this corresponds to maximize:

$$
\sum_{i, j}\left\|\mathbf{M} \mathbf{x}_{i}-\mathbf{M} \mathbf{x}_{j}\right\|^{2}
$$

That is the variance of the low-dimensional points (same goal of the PCA).

PCA and MDS

- The size of the covariance matrix is proportional to the dimension of the data.
- MDS scales with the number of data points instead of the dimensions of the data.
- Both PCA and MDS preserve better large pairwise distances.

Locally Linear Embedding (LLE)

- LLE attempts to discover nonlinear structure in high dimension by exploiting local linear approximation.

Nonlinear Manifold M

Samples on M

Mapping Discovered

Locally Linear Embedding (LLE)

- INTUITION \rightarrow assuming that there is sufficient data (well-sampled manifold) we expect each data point and its neighbors can be approximated by a local linear patch.
- The patch is represented by a weighted sum of the local data points.

Compute Local Patch

- Choose a set of data points close to a given one (ball-radius or K-nearest neighbours).
- Solve for $W_{i j}$:

$$
\mathcal{E}(W)=\sum_{i}\left|\vec{X}_{i}-\sum_{j} W_{i j} \vec{X}_{j}\right|^{2}
$$

LLE Mapping

- Find \vec{Y}_{i} which minimizes the embedding cost function:

$$
\Phi(Y)=\sum_{i}\left|\vec{Y}_{i}-\sum_{j} W_{i j} \vec{Y}_{j}\right|^{2}
$$

Note that weights are fixed in this case!

LLE Algorithm

1. Compute the neighbors of each data point, \vec{X}_{i}.
2. Compute the weights $W_{i j}$ that best reconstruct \vec{X}_{i}.
3. Compute the vectors \vec{Y}_{i} that minimizes the cost function.

LLE - Examble

> PCA fails to preserve the neighborhood structure of the nearby images.

LLE - Example

ISOMAP

- The core idea is to preserve the geodesic distance between data points.
- Geodesic is the shortest path between two points on a curved space.

ISOMAP

Euclidean distance

VS

Geodesic distance

B

Graph build and

C

Geodesic distance vS

Geodesic distance Approximated Geodesic Approximation

ISOMAP

- Construct neighborhood graph
- Define graph G over all data points by connecting points (i, j) if and only if the point i is a K neareast neighbor of point j
- Compute the shortest path
- Using the Floyd's algorithm
- Construct the d-dimensional embedding

ISOMAP

ISOMAP

Autoencoders

- Machine learning is becoming ubiquitous in Computer Science.
- A special type of neural network is called autoencoder.
- An autoencoder can be used to perform dimensionality reduction.
- First, let me say something about neural network..

Autoencoder

Multi-layer Autoencoder

Summon Mapping

- Adaptation of MDS by weighting the contribution of each (i, j) pair:

$$
\phi(\mathbf{Y})=\frac{1}{\sum_{i, j} d_{i j}} \sum_{i \neq j} \frac{\left(d_{i j}-\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|\right)^{2}}{d_{i j}}
$$

- This allows to retain the local structure of the data better than classical scaling (the retain of high distances is not privileged).

t-SNE

- Most techniques for dimensionality reduction are not able to retain both the local and the global structure of the data in a single map.
- Simple tests on handwritten digits demonstrate this (Song et al. 2007).

Stochastic Neighbor Embedding (SNE)

- Similarities between high- and lowdimensional data points is modeled with conditional probabilities.
- Conditional probability that the point x_{i} would peak x_{j} as its neighbor:

$$
p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}
$$

Stochastic Neighbor Embedding (SNE)

- We are interested only in pairwise distance

$$
p_{i \mid i}=0
$$

- For the low-dimensional points an analogous conditional probability is used:

$$
q_{j \mid i}=\frac{\exp \left(-\left\|y_{i}-y_{j}\right\|^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|y_{i}-y_{k}\right\|^{2}\right)}
$$

Kullback-Leibler Divergence

- Coding theory: expected number of extra bits required to code samples from the distribution P if the current code is optimize for the distribution Q.
- Bayesian view: a measure of the information gained when one revises one's beliefs from the prior distribution Q to the posterior distribution P.
- It is also called relative entropy.

Kullback-Leibler Divergence

- Definition for discrete distributions:

$$
D_{K L}(P \| Q)=\sum_{i} P_{i} \log \frac{P_{i}}{Q_{i}}
$$

- Definition for continuos distributions:
$D_{K L}(P \| Q)=\int_{-\infty}^{+\infty} p(x) \log \frac{p(x)}{q(x)} d x$

Stochastic Neighbor Embedding (SNE)

- The goal is to minimizes the mismatch between $p_{j \mid i}$ and $q_{j \mid i}$.
- Using the Kullback-Leibler divergence this goal can be achieved by minimizing the function:

$$
C=\sum_{i} K L\left(P_{i} \| Q_{i}\right)=\sum_{i} \sum_{j} p_{j \mid i} \log \frac{p_{j \mid i}}{q_{j \mid i}}
$$

Note that $K L(P \| Q)$ is not symmetric !

Problems of SNE

- The cost function is difficult to optimize.
- SNE suffers, as other dimensionality reduction techniques, of the crowding problem.

t-SNE

- SNE is made symmetric:

$$
C=K L(P \| Q)=\sum_{i} \sum_{j} p_{i j} \log \frac{p_{i j}}{q_{i j}}
$$

- It employs a Student-t distribution instead of a Gaussian distribution to evaluate the similarity between points in low dimension.

$$
q_{i j}=\frac{\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}}{\sum_{k \neq l}\left(1+\left\|y_{k}-y_{l}\right\|^{2}\right)^{-1}}
$$

t-SNE Advantages

- The crowding problem is alleviated.
- Optimization is made simpler.

Experiments

- Comparison with LLE, Isomap and Summon Mapping.
- Datasets:
- MNIST dataset
- Olivetti face dataset
- COIL-20 dataset

Comparison figures are from the paper L.J.P. van der Maaten and G.E. Hinton, "Visualizing High-Dimensional Data Using t-SNE", Journal of Machine Learning Research, Vol. 9, pp. 2579-2605, 2008.

MNIST Dataset

- 60,000 images of handwritten digits.
- Image resolution: 28×28 (784 dimensions).
- A subset of 6,000 images randomly selected has been used.

COIL-20 Dataset

- Images of 20 objects viewed from 72 different viewpoints (1440 images).
- Image size: 32×32 (1024 dimensions).

COIL-20 Dataset

- - -

Summon

Objects

Arrangement

Motivations

- Multidimensional reduction can be used to arrange objects in 2D or 3D preserving pairwise distances (but the final placement is arbitrary).
- Many applications require to place the objects in a set of pre-defined, discrete, positions (e.g. on a grid).

Example - Images of Flowers

Random Order

Example - Images of Flowers

Isomap

Example - Images of Flowers

IsoMatch (computed on colors)

Problem Statement

The goal is to find the permutation π that minimizes the following energy:

IsoMatch - Algorithm

- Step I : Dimensionality Reduction (using Isomap)
- Step II : Coarse Alignment (bounding box)
- Step III : Bipartite Matching
- Step IV (optional) : Random Refinement (elements swap)

Algorithm - Step I

Dimensionality Reduction

Algorithm - Step II
 Coarse Alignment

Bipartite Matching

- A complete bipartite graph is built (one with the starting locations, one with the target locations)
- The arc (i, j) is weighted according to the corresponding pairwise distance.
- A minimal bipartite matching is calculated using the Hungarian algorithm.

Algorithm - Step III

Bipartite Matching (graph built)

Algorithm - Step III Bipartite Matching -

Algorithm - Step III Final Assignment

PileBars

- A new type of thumbnail bar.
- Paradigm: focus + context.
- Objects are arranged in a small space (images are subdivided into clusters to save space).
- Support any image-image distance.
- PileBars are dynamic!

PileBars - Layouts

Slots

PileBars

- Thumbnails are dynamically rearranged, resized and reclustered adaptively during the browsing.
- This is done in a way to ensure smooth transitions.

PileBars - Application Example Navigation of Registered Photographs

Take a look at http://vcg.isti.cnr.it/photocloud .

Questions ?

